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1 Introduction

We consider the system of nonlinear higher-order ordinary differential equa-
tions

(S)

{
u(n)(t) + c(t)f(v(t)) = 0, t ∈ (0, T ),
v(m)(t) + d(t)g(u(t)) = 0, t ∈ (0, T ),

with the multi-point boundary conditions

(BC)






u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(T ) =

p−2∑

i=1

aiu(ξi) + a0,

v(0) = v′(0) = · · · = v(m−2)(0) = 0, v(T ) =

q−2∑

i=1

biv(ηi) + b0,

where n, m, p, q ∈ N, n ≥ 2, m ≥ 2, p ≥ 3, q ≥ 3 and 0 < ξ1 < · · · < ξp−2 <
T , 0 < η1 < · · · < ηq−2 < T .

EJQTDE, 2012 No. 49, p. 1



By using the Schauder fixed point theorem, we shall prove the existence of
positive solutions of problem (S)−(BC). By a positive solution of (S)−(BC)
we mean a pair of functions (u, v) ∈ Cn([0, T ]; R+)×Cm([0, T ]; R+) satisfying
(S) and (BC) with u(t) > 0, v(t) > 0 for all t ∈ (0, T ]. We shall also
give sufficient conditions for the nonexistence of positive solutions for this
problem.

Multi-point boundary value problems for systems of ordinary differential
equations which involve positive eigenvalues were studied in recent years by
J. Henderson, R. Luca, S. K. Ntouyas and I. K. Purnaras, by using the Guo-
Krasnosel’skii fixed point theorem. Namely, in [2], the authors give sufficient
conditions for λ, µ, f and g such that the system of differential equations

(S1)

{
u(n)(t) + λc(t)f(u(t), v(t)) = 0, t ∈ (0, T ),
v(m)(t) + µd(t)g(u(t), v(t)) = 0, t ∈ (0, T ),

with the boundary conditions (BC) with a0 = b0 = 0 (denoted by (BC1))

has positive solutions. The system (S1) with f(u, v) = f̃(v), g(u, v) = g̃(u)

and n = m (denoted by (S̃1)) with the boundary conditions (BC1) where
n = m, p = q, ai = bi, ξi = ηi for i = 1, ..., p − 2, has been studied
in [19]. In [6], the authors studied the system (S̃1) with T = 1 and the
boundary conditions u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = αu(η),
v(0) = v′(0) = · · · = v(n−2)(0) = 0, v(1) = αv(η), where 0 < η < 1 and
0 < αηn−1 < 1. We also mention the paper [23], where the authors used
fixed point index theory to prove the existence of positive solutions for the
system (S1) with λ = µ = 1 and (BC1), where 1

2
≤ ξ1 < · · · < ξp−2 < 1,

1
2
≤ η1 < · · · < ηq−2 < 1. For multi-point boundary value problems for

nonlinear higher-order ordinary differential equations we mention the papers
[1], [15].

The systems (S) and (S1) with n = m = 2 subject to various boundary
conditions were studied in [3], [7], [8], [10], [11], [17], [20]. Some discrete
versions of these nonlinear second-order boundary value problems have been
investigated in [4], [5], [9], [12], [18], [21].

Our results obtained in this paper were inspired by the paper [16], where
the authors studied the existence and nonexistence of positive solutions for
the m-point boundary value problem on time scales





u∆∇(t) + a(t)f(u(t)) = 0, t ∈ (0, T ),

βu(0) − γu∆(0) = 0, u(T ) −

m−2∑

i=1

aiu(ξi) = b, m ≥ 3, b > 0,
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where in this case (0, T ) denotes a time scale interval.
Multi-point boundary value problems for ordinary differential equations

or finite difference equations have applications in a variety of different ar-
eas of applied mathematics and physics. For example the vibrations of a guy
wire of a uniform cross-section and composed of N parts of different densities
can be set up as a multi-point boundary value problem (see [22]); also many
problems in the theory of elastic stability can be handled as multi-point prob-
lems (see [24]). The study of multi-point boundary value problems for second
order differential equations was initiated by Il’in and Moiseev (see [13], [14]).
Since then such multi-point boundary value problems (continuous or discrete
cases) have been studied by many authors, by using different methods, such
as fixed point theorems in cones, the Leray-Schauder continuation theorem,
nonlinear alternatives of Leray-Schauder and coincidence degree theory.

In Section 2, we shall present some auxiliary results which investigate
a boundary value problem for a n-th order differential equation (problem
(1) − (2) below). In Section 3, we shall prove our main results, and in
Section 4, we shall present a simple example which illustrate the obtained
results.

2 Auxiliary results

In this section, we shall present some auxiliary results from [15] and [19]
related to the following n-th order differential equation with p-point boundary
conditions

u(n)(t) + y(t) = 0, t ∈ (0, T ), (1)

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(T ) =

p−2∑

i=1

aiu(ξi). (2)

Lemma 2.1 ([15], [19]) If d = T n−1−

p−2∑

i=1

aiξ
n−1
i 6= 0, 0 < ξ1 < · · · < ξp−2 <

T and y ∈ C([0, T ]), then the solution of (1)-(2) is given by

u(t)=
tn−1

d(n − 1)!

∫ T

0

(T − s)n−1y(s) ds−
tn−1

d(n − 1)!

p−2∑

i=1

ai

∫ ξi

0

(ξi − s)n−1y(s) ds

−
1

(n − 1)!

∫ t

0

(t − s)n−1y(s) ds, 0 ≤ t ≤ T.
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Lemma 2.2 ([15], [19]) Under the assumptions of Lemma 2.1, Green’s func-
tion for the boundary value problem (1)-(2) is given by

G1(t, s)

=






tn−1

d(n − 1)!

[
(T − s)n−1 −

p−2∑

i=j+1

ai(ξi − s)n−1

]
−

1

(n − 1)!
(t − s)n−1,

if ξj ≤ s < ξj+1, s ≤ t,

tn−1

d(n − 1)!

[
(T − s)n−1 −

p−2∑

i=j+1

ai(ξi − s)n−1

]
,

if ξj ≤ s < ξj+1, s ≥ t, j = 0, . . . , p − 3,
tn−1

d(n − 1)!
(T − s)n−1 −

1

(n − 1)!
(t − s)n−1, if ξp−2 ≤ s ≤ T, s ≤ t,

tn−1

d(n − 1)!
(T − s)n−1, if ξp−2 ≤ s ≤ T, s ≥ t, (ξ0 = 0).

Using the above Green’s function the solution of problem (1)-(2) is ex-

pressed as u(t) =

∫ T

0

G1(t, s)y(s) ds.

Lemma 2.3 ([15], [19]) If ai > 0 for all i = 1, . . . , p − 2, 0 < ξ1 < · · · <
ξp−2 < T , d > 0 and y ∈ C([0, T ]), y(t) ≥ 0 for all t ∈ [0, T ], then the
solution u of problem (1)-(2) satisfies u(t) ≥ 0 for all t ∈ [0, T ].

Lemma 2.4 ([19]) If ai > 0 for all i = 1, . . . , p−2, 0 < ξ1 < · · · < ξp−2 < T ,
d > 0, y ∈ C([0, T ]), y(t) ≥ 0 for all t ∈ [0, T ], then the solution of problem
(1)-(2) satisfies






u(t) ≤
T n−1

d(n − 1)!

∫ T

0

(T − s)n−1y(s) ds, ∀t ∈ [0, T ],

u(ξj) ≥
ξn−1
j

d(n − 1)!

∫ T

ξp−2

(T − s)n−1y(s) ds, ∀ j = 1, p − 2.

Lemma 2.5 ([15]) Assume that 0 < ξ1 < · · · < ξp−2 < T , ai > 0 for all
i = 1, . . . , p − 2, d > 0 and y ∈ C([0, T ]), y(t) ≥ 0 for all t ∈ [0, T ]. Then
the solution of problem (1)-(2) satisfies inf

t∈[ξp−2,T ]
u(t) ≥ γ1‖u‖, where
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γ1 =






min

{
ap−2(T − ξp−2)

T − ap−2ξp−2
,
ap−2ξ

n−1
p−2

T n−1

}
, if

p−2∑

i=1

ai < 1,

min

{
a1ξ

n−1
1

T n−1
,
ξn−1
p−2

T n−1

}
, if

p−2∑

i=1

ai ≥ 1.

We can also formulate similar results as Lemma 2.1 - Lemma 2.5 above
for the boundary value problem

v(m)(t) + h(t) = 0, t ∈ (0, T ), (3)

v(0) = v′(0) = · · · = v(m−2)(0) = 0, v(T ) =

q−2∑

i=1

biv(ηi). (4)

If e = Tm−1 −

q−2∑

i=1

biη
m−1
i 6= 0, 0 < η1 < · · · < ηq−2 < T and h ∈ C([0, T ]),

we denote by G2 Green’s function corresponding to problem (3)-(4), that is

G2(t, s)

=





tm−1

e(m − 1)!

[
(T − s)m−1 −

q−2∑

i=j+1

bi(ηi − s)m−1

]
−

1

(m − 1)!
(t − s)m−1,

if ηj ≤ s < ηj+1, s ≤ t,

tm−1

e(m − 1)!

[
(T − s)m−1 −

q−2∑

i=j+1

bi(ηi − s)m−1

]
,

if ηj ≤ s < ηj+1, s ≥ t, j = 0, . . . q − 3,
tm−1

e(m − 1)!
(T − s)m−1 −

1

(m − 1)!
(t − s)m−1, if ηq−2 ≤ s ≤ T, s ≤ t,

tm−1

e(m − 1)!
(T − s)m−1, if ηq−2 ≤ s ≤ T, s ≥ t, (η0 = 0).

Under similar assumptions as those from Lemma 2.5, we have the in-
equality inf

t∈[ηq−2,T ]
v(t) ≥ γ2‖v‖, where v is the solution of problem (3)-(4) and

γ2 is given by
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γ2 =






min

{
bq−2(T − ηq−2)

T − bq−2ηq−2
,
bq−2η

m−1
q−2

Tm−1

}
, if

q−2∑

i=1

bi < 1,

min

{
b1η

m−1
1

Tm−1
,
ηm−1

q−2

Tm−1

}
, if

q−2∑

i=1

bi ≥ 1.

3 Main results

We present the assumptions that we shall use in the sequel:
(H1) 0 < ξ1 < · · · < ξp−2 < T , 0 < η1 < · · · < ηq−2 < T , ai >

0, i = 1, . . . , p − 2, bi > 0, i = 1, . . . , q − 2, d = T n−1 −

p−2∑

i=1

aiξ
n−1
i > 0,

e = Tm−1 −

q−2∑

i=1

biη
m−1
i > 0.

(H2) The functions c, d : [0, T ] → [0,∞) are continuous and there exist
t0, t̃0 ∈ [θ0, T ] such that c(t0) > 0, d(t̃0) > 0, where θ0 = max{ξp−2, ηq−2}.

(H3) The functions f, g : [0,∞) → [0,∞) are continuous and there exists

c0 > 0 such that f(u) <
c0

L
, g(u) <

c0

L
for all u ∈ [0, c0], where

L = max

{
T n−1

d(n − 1)!

∫ T

0

(T − s)n−1c(s) ds,
Tm−1

e(m − 1)!

∫ T

0

(T − s)m−1d(s) ds

}
.

(H4) The functions f, g : [0,∞) → [0,∞) are continuous and satisfy the

conditions lim
u→∞

f(u)

u
= ∞, lim

u→∞

g(u)

u
= ∞.

First we present an existence result for the positive solutions of (S) −
(BC).

Theorem 3.1 Assume that the assumptions (H1), (H2) and (H3) hold. Then
the problem (S)−(BC) has at least one positive solution for a0 > 0 and b0 > 0
sufficiently small.

Proof. We consider the problems




h(n)(t) = 0, t ∈ (0, T ),

h(0) = h′(0) = · · · = h(n−2)(0) = 0, h(T ) =

p−2∑

i=1

aih(ξi) + 1,
(5)
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w(m)(t) = 0, t ∈ (0, T ),

w(0) = w′(0) = · · · = w(m−2)(0) = 0, w(T ) =

q−2∑

i=1

biw(ηi) + 1.
(6)

The above problems (5) and (6) have the solutions

h(t) =
tn−1

d
, w(t) =

tm−1

e
, t ∈ [0, T ]. (7)

We define the functions x(t) and y(t), t ∈ [0, T ] by

x(t) = u(t) − a0h(t), y(t) = v(t) − b0w(t), t ∈ [0, T ],

where (u, v) is solution of (S)− (BC). Then (S)− (BC) can be equivalently
written as

{
x(n)(t) + c(t)f(y(t) + b0w(t)) = 0, t ∈ (0, T ),
y(m)(t) + d(t)g(x(t) + a0h(t)) = 0, t ∈ (0, T ),

(8)

with the boundary conditions






x(0) = x′(0) = · · · = x(n−2)(0) = 0, x(T ) =

p−2∑

i=1

aix(ξi),

y(0) = y′(0) = · · · = y(m−2)(0), y(T ) =

q−2∑

i=1

biy(ηi).

(9)

Using the Green’s functions given in Section 2, a pair (x, y) is a solution
of the problem (8)-(9) if and only if (x, y) is a solution for the nonlinear
integral equations





x(t) =

∫ T

0

G1(t, s)c(s)f

(∫ T

0

G2(s, τ)d(τ)g(x(τ) + a0h(τ)) dτ + b0w(s)

)
ds,

y(t) =

∫ T

0

G2(t, s)d(s)g(x(s) + a0h(s)) ds, 0 ≤ t ≤ T,

(10)
where h(t), w(t), t ∈ [0, T ] are given by (7).

We consider the Banach space X = C([0, T ]) with the supremum norm
‖ · ‖ and define the set

K = {x ∈ C([0, T ]), 0 ≤ x(t) ≤ c0, ∀ t ∈ [0, T ]} ⊂ X.
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We also define the operator A : K → X by

A(x)(t) =

∫ T

0

G1(t, s)c(s)f

(∫ T

0

G2(s, τ)d(τ)g(x(τ) + a0h(τ))dτ

+b0w(s)

)
ds, 0 ≤ t ≤ T, x ∈ K.

For sufficiently small a0 > 0 and b0 > 0, by (H3), we deduce

f(y(t) + b0w(t)) ≤
c0

L
, g(x(t) + a0h(t)) ≤

c0

L
, ∀ t ∈ [0, T ], ∀x, y ∈ K.

Then, by using Lemma 2.3, we obtain A(x)(t) ≥ 0 for all t ∈ [0, T ] and
x ∈ K. By Lemma 2.4, for all x ∈ K, we have

∫ T

0

G2(s, τ)d(τ)g(x(τ) + a0h(τ)) dτ ≤
Tm−1

e(m − 1)!

∫ T

0

(T − τ)m−1d(τ)g(x(τ)

+a0h(τ)) dτ ≤
c0T

m−1

eL(m − 1)!

∫ T

0

(T − τ)m−1d(τ) dτ ≤ c0, ∀ s ∈ [0, T ],

and

A(x)(t)≤
T n−1

d(n − 1)!

∫ T

0

(T − s)n−1c(s)f

(∫ T

0

G2(s, τ)d(τ)g(x(τ) + a0h(τ))dτ

+b0w(s)

)
ds ≤

c0T
n−1

dL(n − 1)!

∫ T

0

(T − s)n−1c(s)ds ≤ c0, ∀ t ∈ [0, T ].

Therefore A(K) ⊂ K.
Using standard arguments, we deduce that A is completely continuous (A

is compact, that is for any bounded set B ⊂ K, A(B) ⊂ K is relatively com-
pact by Arzèla-Ascoli theorem, and A is continuous). By the Schauder fixed
point theorem, we conclude that A has a fixed point x ∈ K. This element

together with y given by y(t) =

∫ T

0

G2(t, s)d(s)g(x(s)+a0h(s)) ds, t ∈ [0, T ]

represents a solution for (8)-(9). This shows that our problem (S) − (BC)
has a positive solution u = x + a0h, v = y + b0w for sufficiently small a0 and
b0. 2

In what follows, we present sufficient conditions for the nonexistence of
the positive solutions of (S) − (BC).
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Theorem 3.2 Let the assumptions (H1), (H2) and (H4) be satisfied. Then
the problem (S) − (BC) has no positive solution for a0 and b0 sufficiently
large.

Proof. We suppose that (u, v) is a positive solution of (S) − (BC). Then
x = u − a0h, y = v − b0w is a solution for (8)-(9), where h and w are
the solutions of problems (5) and (6) (given by (7)). By Lemma 2.3, we
have x(t) ≥ 0, y(t) ≥ 0 for all t ∈ [0, T ], and by (H2) we deduce that
‖x‖ > 0, ‖y‖ > 0. Using Lemma 2.5, we also have inf

t∈[ξp−2,T ]
x(t) ≥ γ1‖x‖ and

inf
t∈[ηq−2,T ]

y(t) ≥ γ2‖y‖, where γ1, γ2 are defined in Section 2.

Using now (7), we deduce that inf
t∈[ξp−2,T ]

h(t) = ξn−1
p−2 /d. Therefore

inf
t∈[ξp−2,T ]

h(t) = ξn−1
p−2‖h‖/T

n−1 ≥ γ1‖h‖.

In a similar manner we obtain inf
t∈[ηq−2,T ]

w(t) ≥ γ2‖w‖.

Therefore, we obtain

inf
t∈[ξp−2,T ]

(x(t) + a0h(t)) ≥ inf
t∈[ξp−2,T ]

x(t) + a0 inf
t∈[ξp−2,T ]

h(t) ≥ γ1‖x + a0h‖,

inf
t∈[ηq−2,T ]

(y(t) + b0w(t)) ≥ inf
t∈[ηq−2,T ]

y(t) + b0 inf
t∈[ηq−2,T ]

w(t) ≥ γ2‖y + b0w‖.

We now consider

R =

(
min

{
γ2ξ

n−1
p−2

d(n − 1)!

∫ T

θ0

(T − s)n−1c(s) ds,

γ1η
m−1
q−2

e(m − 1)!

∫ T

θ0

(T − s)m−1d(s) ds

})−1

> 0.

By (H4), for R defined above, we deduce that there exists M > 0 such
that f(u) > 2Ru, g(u) > 2Ru for all u ≥ M .

We consider a0 > 0 and b0 > 0 sufficiently large such that

inf
t∈[θ0,T ]

(x(t) + a0h(t)) ≥ M and inf
t∈[θ0,T ]

(y(t) + b0w(t)) ≥ M.
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By using Lemma 2.4 and the above considerations, we have

y(ηq−2) ≥
ηm−1

q−2

e(m − 1)!

∫ T

ηq−2

(T − s)m−1d(s)g(x(s) + a0h(s)) ds

≥
ηm−1

q−2

e(m − 1)!

∫ T

θ0

(T − s)m−1d(s)g(x(s) + a0h(s)) ds

≥
2Rηm−1

q−2

e(m − 1)!

∫ T

θ0

(T − s)m−1d(s)(x(s) + a0h(s)) ds

≥
2Rηm−1

q−2

e(m − 1)!
inf

τ∈[θ0,T ]
(x(τ) + a0h(τ))

∫ T

θ0

(T − s)m−1d(s) ds

≥
2Rηm−1

q−2

e(m − 1)!
inf

τ∈[ξp−2,T ]
(x(τ) + a0h(τ))

∫ T

θ0

(T − s)m−1d(s) ds

≥
2Rγ1η

m−1
q−2

e(m − 1)!
‖x + a0h‖

∫ T

θ0

(T − s)m−1d(s) ds ≥ 2‖x + a0h‖ ≥ 2‖x‖.

Therefore, we obtain

‖x‖ ≤ y(ηq−2)/2 ≤ ‖y‖/2. (11)

In a similar manner, we deduce

x(ξp−2) ≥
ξn−1
p−2

d(n − 1)!

∫ T

ξp−2

(T − s)n−1c(s)f(y(s) + b0w(s)) ds

≥
ξn−1
p−2

d(n − 1)!

∫ T

θ0

(T − s)n−1c(s)f(y(s) + b0w(s)) ds

≥
2Rξn−1

p−2

d(n − 1)!

∫ T

θ0

(T − s)n−1c(s)(y(s) + b0w(s)) ds

≥
2Rξn−1

p−2

d(n − 1)!
inf

τ∈[θ0,T ]
(y(τ) + b0w(τ))

∫ T

θ0

(T − s)n−1c(s) ds

≥
2Rξn−1

p−2

d(n − 1)!
inf

τ∈[ηq−2,T ]
(y(τ) + b0w(τ))

∫ T

θ0

(T − s)n−1c(s) ds

≥
2Rγ2ξ

n−1
p−2

d(n − 1)!
‖y + b0w‖

∫ T

θ0

(T − s)n−1c(s) ds ≥ 2‖y + b0w‖ ≥ 2‖y‖.

So, we obtain
‖y‖ ≤ x(ξp−2)/2 ≤ ‖x‖/2. (12)

By (11) and (12), we obtain ‖x‖ ≤ ‖y‖/2 ≤ ‖x‖/4, which is a contradic-
tion, because ‖x‖ > 0. Then, for a0 and b0 sufficiently large, our problem
(S) − (BC) has no positive solution. 2
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4 An example

We consider T = 1, c(t) = ct, d(t) = dt, t ∈ [0, 1], c, d > 0; n = 4, m =
3, p = 4, q = 5, ξ1 = 1

3
, ξ2 = 2

3
, a1 = 2, a2 = 1

2
, η1 = 1

4
, η2 = 1

2
, η3 =

3
4
, b1 = 1, b2 = 1

2
, b3 = 1

3
. Then d = 7

9
> 0, e = 5

8
> 0.

We also consider the functions f, g : [0,∞) → [0,∞), f(x) =
ãxα

xβ + c̃
,

g(x) =
b̃xγ

xδ + d̃
with ã, b̃, c̃, d̃ > 0, α, β, γ, δ > 0, α > β + 1, γ > δ + 1. We

have lim
x→∞

f(x)

x
= lim

x→∞

g(x)

x
= ∞. The constant L from (H3) is in this case

L = max

{
1

d(n − 1)!

∫ 1

0

cs(1 − s)n−1 ds,
1

e(m − 1)!

∫ 1

0

ds(1 − s)m−1 ds

}

= max

{
3c

280
,

d

15

}
.

We choose c0 = 1 and if we select ã, b̃, c̃, d̃ satisfying the conditions

ã <
1 + c̃

L
= (1 + c̃) min

{
280

3c
,
15

d

}
, b̃ <

1 + d̃

L
= (1 + d̃) min

{
280

3c
,
15

d

}
,

then we obtain f(x) ≤ ea
1+ec

< 1
L
, g(x) ≤

eb

1+ ed
< 1

L
for all x ∈ [0, 1].

Thus all the assumptions (H1)− (H4) are satisfied. By Theorem 3.1 and
Theorem 3.2 we deduce that the nonlinear second-order differential system





u(4)(t) + ct
ãvα(t)

vβ(t) + c̃
= 0, t ∈ (0, 1),

v(3)(t) + dt
b̃uγ(t)

uδ(t) + d̃
= 0, t ∈ (0, 1),

with the boundary conditions
{

u(0) = u′(0) = u′′(0) = 0, u(1) = 2u(1
3
) + 1

2
u(2

3
) + a0,

v(0) = v′(0) = 0, v(1) = v(1
4
) + 1

2
v(1

2
) + 1

3
v(3

4
) + b0,

has at least one positive solution for sufficiently small a0 > 0 and b0 > 0 and
no positive solution for sufficiently large a0 and b0.
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